MZ

FotoFirst NameLast NamePosition
Marcus Magnor Graphics - Optics - Vision (Affiliated Independent Research Group)
Dominik Michels High Fidelity Algorithmics Group
Meinard Müller Multimedia Retrieval
Matthias Niessner Semantics and Geometry
Antti Oulasvirta Adaptive Multimodal User Interfaces
Sören Pirk Geometric Modelling
Erik Reinhard Color Image Processing
Tobias Ritschel Rendering and GPUs
Bodo Rosenhahn Marker-less Motion Capture
Bodo Rosenhahn Marker-less Motion Capture

Researcher


Dr. Michael Zollhöfer


Visual Computing, Deep Learning and Optimization

Name of Research Group: Visual Computing, Deep Learning and Optimization
Homepage Research Group: web.stanford.edu/~zollhoef
Personal Homepage: zollhoefer.com
Mentor Saarbrücken: Hans-Peter Seidel
Mentor Stanford: Pat Hanrahan
Research Mission: The primary focus of my research is to teach computers to reconstruct and analyze our world at frame rate based on visual input. The extracted knowledge is the foundation for a broad range of applications not only in visual effects, computer animation, autonomous driving and man-machine interaction, but is also essential in other related fields such as medicine and biomechanics. Especially, with the increasing popularity of virtual, augmented and mixed reality, there comes a rising demand for real-time low latency solutions to the underlying core problems.    My research tackles these challenges based on novel mathematical models and algorithms that enable computers to first reconstruct and subsequently analyze our world. The main focus is on fast and robust algorithms that approach the underlying reconstruction and machine learning problems for static as well as dynamic scenes. To this end, I develop key technology to invert the image formation models of computer graphics based on data-parallel optimization and state-of-the-art deep learning techniques.    The extraction of 3D and 4D information from visual data is highly challenging and under-constraint, since image formation convolves multiple physical dimensions into flat color measurements. 3D and 4D reconstruction at real-time rates poses additional challenges, since it involves the solution of unique challenges at the intersection of multiple important research fields, namely computer graphics, computer vision, machine learning, optimization, and high-performance computing. However, a solution to these problems provides strong cues for the extraction of higher-order semantic knowledge. It is incredibly important to solve the underlying core problems, since this will have high impact in multiple important research fields and provide key technological insights that have the potential to transform the visual computing industry. In summer 2019 Michael Zollhöfer joined Facebook.

Researcher

Name of Researcher
Thomas Wiegand
Homepage of Research Group
First Name
Thomas
Last Name
Wiegand
Foto
url_foto
wp.mpi-inf.mpg.de/mpc-vcc/files/2012/01/wiegand-e1328696041603.jpg
Phone
Position
Image Processing
Categories
Former Groups
Research Mission
Digital video compression technologies are fundamentally changing the way we create, communicate, and consume information. They have not only transformed existing applications and services like the distribution of entertainment video to the home but also spawned brand new industries and services. I am interested in researching new ideas for video compression and transmission. These include ideas from vision, statistics as well as brain-computer interfaces such as electroencephalography for distortion measurement.
mission_rtf
Name of Research Group
Image Processing

Personal Info

Photo